

Date Planned ://	Daily Tutorial Sheet-1	Expected Duration : 90 Min
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :

- 1. If equilibrium constant for the reaction, $A_2 + B_2 \rightleftharpoons 2AB$, is K, then for the backward reaction $AB \rightleftharpoons \frac{1}{2}A_2 + \frac{1}{2}B_2$, the equilibrium constant is $\frac{1}{K}$. (True/False) (1984)
- One mole of nitrogen is mixed with three moles of hydrogen in a four litre container. If 0.25 per cent of nitrogen is converted to ammonia by the following reaction $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$, then calculate the equilibrium constant, K_c in concentration units. What will be the value of K_c for the following equilibrium? (1984) $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \Longrightarrow NH_3(g)$
- When a liquid and its vapour are at equilibrium and the pressure is suddenly decreased, cooling occurs.(True/False)
- *4. For the gas phase reaction, $C_2H_4 \rightleftharpoons C_2H_6$ $(\Delta H = -32.7 \text{ kcal})$ (1984) Carried out in a vessel, the equilibrium concentration of C_2H_4 can be increased by :
 - **(A)** increasing the temperature
- **(B)** decreasing the pressure

(C) removing some H_2

- **(D)** adding some C_2H_6
- The equilibrium constant of the reaction $A_2(g) + B_2(g) \Longrightarrow 2AB(g)$ at $100^{\circ}C$ is 50. If a one litre flask containing one mole of A_2 is connected to a two litre flask containing two moles of B_2 , how many moles of AB will be formed at 373 K? (1985)
- *6. When NaNO₃ is heated in a closed vessel, oxygen is liberated and NaNO₂ is left behind. At equilibrium,
 - (A) adding of NaNO2 favours reverse reaction

(1986)

- (B) adding of NaNO₃ favours forward reaction
- (C) increasing temperature favours forward reaction
- **(D)** increasing pressure favours reverse reaction
- **7.** Catalyst makes a reaction more exothermic.


(1987)

- **8.** At a certain temperature, equilibrium constant (K_c) is 16 for the reaction;
- (1987)

$$SO_2(g) + NO_2(g) \Longrightarrow SO_3(g) + NO(g)$$

If we take one mole each of all the four gases in a one litre container, what would be the equilibrium concentrations of NO and NO_2 ?

- 9. N_2O_4 is 25% dissociated at 37°C and one atmosphere pressure. Calculate (i) K_p and (ii) the percentage dissociation at 0.1 atm and 37°C. (1988)
- 10. The equilibrium constant K_p of the reaction, $2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$ is 900 atm at 800 K. A mixture containing SO_3 and O_2 having initial pressure of 1 and 2 atm respectively is heated at constant volume to equilibrate. Calculate the partial pressure of each gas at 800K. (1989)

- For the reaction, $CO(g) + 2H_2 \rightleftharpoons CH_3OH(g)$ hydrogen gas is introduced into a five litre flast at 327°C,s containing 0.2 mole of CO(g) and a catalyst, until the pressure is 4.92 atm. At this point 0.1 mole of $CH_3OH(g)$ is formed. Calculate the equilibrium constant, K_p and K_c . (1990)
- *12. For the reaction, $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ the forward reaction at constant temperature is favoured by:
 - (A) introducing an inert gas at constant volume
 - (B) introducing chlorine gas at constant volume
 - (C) increasing the volume of the container
 - (**D**) introducing PCl₅ at constant volume
- 13. The rate of an exothermic reaction increase with increasing temperature. (True/False) (1993)
- 14. 0.15 mole of CO taken in a 2.5L flask is maintained at 752 K along with a catalyst so that the following reaction can take place: (1993)

$$CO(g) + H_2 \rightleftharpoons CH_3OH(g)$$

Hydrogen is introduced until the total pressure of the system is 8.5 atm at equilibrium and 0.08 mole of methanol is formed. Calculate (i) K_p and K_c and (ii) the final pressure is the same amount of CO and H_2 as before are used, but with no catalyst so that the reaction does not take place.

15. A ten-fold increase in pressure on the reaction, $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$ at equilibrium, results in......in K_p . (1996)